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Abstract —A Ka-band front end has been developed which integrates a
low-loss wide-band monolithic mixer, a two-stage hybrid IF amplifier, and a
lumped-element Gunn local oscillator (LO). Small size (0.5 cubic in), high
performance, and potentially low production cost have been demonstrated
through the application of highly compatible IC construction techniques.

I. INTRODUCTION

N RECENT YEARS, it has become increasingly im-

portant to reduce the size and cost of millimeter-wave
(MMW) receiver front ends. Applications, where such re-
ductions are particularly important, include electronic
warfare (EW) frequency-extension programs, radiometric
seekers, and phased-array radars. To address these needs,
we are currently engaged in a multiyear development pro-
gram. The object of the program is to develop MMW IC
components and to integrate them to form general-purpose
demonstration receivers. Of special interest is the Ka-band
receiver front end, which was briefly outlined at the 1985
MTT-S Symposium [1] and is described here in detail.

Although monolithic techniques are favored for high-
volume production runs, the hybrid I1C approach appears
to be better suited to limited production runs. Therefore, to
keep our investigation general, we have chosen to include
both monolithic and hybrid IC’s in our work. However, by
utilizing the same materials and processes in many of our
monolithic and “hybrid” circuits! we have the ability to
tailor our generic components to specific applications as
they arise. Thus, circuits that currently require some bond-
ing operations can be upgraded to fully monolithic circuits
when required.

II. PREFERRED DESIGN APPROACH

After studying a wide range of alternative construction
techniques and block diagrams for the demonstration front
end, a preferred design approach was chosen. It was de-
cided that most circuits would be developed in microstrip,
with semi-insulating GaAs as the substrate material. Ka-
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!The term “hybrid” is used in this paper to include those circuits
which mix monolithic elements and discrete devices on a single substrate.
Such circuits, which are comparable in size to fully monolithic circuits,
are sometimes called quasi-monolithic.
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Fig. 1. Block diagram of an integrated front end.

band was chosen as the RF band, to address a wide range
of forward-looking programs. (The design and construction
techniques that were utilized, however, are applicable to
other RF bands in the range of 1-120 GHz.) To maximize
the unloaded Q in the selected RF band, the thickness of
the substrate was chosen to be 5 mil [2]. Regarding the
block diagram of the demonstration front end. it was
decided that the hardware should at minimum include a
balanced mixer, a two-stage IF amplifier, and a local
oscillator (LO).

Fig. 1 shows the block diagram of the preferred front
end, which is assembled in two modules. This configura-
tion was selected to address a broad range of system
applications and exploit the capabilities of compatible IC
construction techniques. Module A includes a monolithic
balanced mixer and a two-stage IF amplifier. Rather than
directly integrating these components, and risking LO
feedthrough via higher order modes, a short length of 50-Q
line (a mode barrier) is utilized. Also contained in Module
A is a 7-dB pad, which ensures a good LO input SWR
during unpumped (start-up) conditions. Module A can be
tested with a remote LO, or it can be integrated with the
Gunn LO contained in Module B. Details on the front-end
components and their constituent device and circuit ele-
ments are contained in the following sections.

III. MoNoLITHIC MIXER

The entire balanced Ka-band mixer and an enlarged
view of one mixer diode are shown in Fig. 2(a) and (b),
respectively. The entire mixer circuit measures 5 by 140 by
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-
Fig. 2. Monolithic Ku-band mixer. (a) Entire circuit. (b) Enlarged view.

180 mil, and includes a single-section branch-line coupler,
diode-matching networks, and an IF output filter. Each of
these circuit elements was independently optimized, in a
precision test fixture, prior to the mixer integration.

The test fixture, shown in Fig. 3, allows accurate mea-
surements to be made of the microstrip components with
standard waveguide instrumentation. The test housing con-
tains parallel WR-28 waveguides that are linked by an
E-plane channel. The channel accommodates a carrier con-
taining microstrip substrates, which are fabricated from
5-mil Duroid and semi-insulating GaAs. Although this
multisubstrate approach requires extra assembly oper-
ations, it proved to be particularly useful in the early
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Fig. 3. Waveguide/IC test fixture.
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development work. The advantages of this approach in-
clude the following.

1) Unlike. GaAs, the Duroid substrates are not brittle;
although they are supported only at the edges of the
waveguide, they are not subject to breakage.

2) The size of the GaAs circuit can be minimized; this
reduces the risk of breakage and allows many circuits to be
processed on a single wafer.

© 3) The waveguides can be widely spaced; this avoids
spurious coupling between the input and output ports via

" higher mode propagation.

Referring to Fig. 3, a signal entering one of the WR-28
ports will be coupled into the microstrip probe that is
printed on one side of the 5-mil Duroid board. The probe
is reactively terminated by a noncontacting back-short
whose location can be varied to optimize the impedance
match. The signal continues through the GaAs microstrip
and is launched into the output waveguide by another
probe transition. Measurements show that each transition
has a return loss of 16 dB or better and an insertion loss of
0.35-0.5 dB across the band of 32-35 GHz.

With the aid of the waveguide fixture, the dimensions of

- the hybrid coupler and diode-matching networks were opti-

mized. (The coupler was tested as a two-port network, with
internal terminations at the remaining ports.) As a. further
step in the optimization, the complete mixer was tested as a
hybrid circuit [3] prior to the monolithic. realization. This
circuit, shown in Fig. 4, contains beam-lead diodes that
were bonded to the GaAs substrate. Measurements in the
waveguide test fixture showed a minimum conversion loss
of 6.2 dB, with a useful instantaneous bandwidth of over 5
GHz. .

- After completing the hybrid tests, some refinements were
incorporated in the circuit elements, and a fully monolithic
mixer was constructed. The monolithic diode (Fig. 2(b)) is
a high-cutoff mesa device, similar.in construction to our
carlier discrete devices [4]. The processing features tanta-. .
lum-gold metallization and plasma dry-etch techniques.’
These techniques result in excellent uniformity and high
yield over large wafer areas (up to 6.5 cm?).

The monolithic mixer is fabricated on an epitaxial GaAs
wafer that has an n-layer carrier concentration of 3-5 x 10¢
cm? and a thickness of 0.1 pm after processing. The
underlying n*-layer has a thickness of 1.0-1.5 pm, with a
carrier concentration of 2X10'® em ™3, High reliability is
assured by double passivation (sputtered SiO, and Si;N,
layers), which also serves as the base for the distributed-cir-
cuit metallization. Windows were opened through the pas-
sivation layer to evaporate ohmic contacts consisting of
AuGe-Au. Finally, the circuit was completed by pulse-
plating a gold airbridge connection between the ohmic
contact and the distributed circuit. ‘

A typical forward voltage—current (V' —1) characteristic
for the monolithic device is shown in Fig. 5. From this
plot, it can be determined that the ideality factor is 1.05
and the series resistance is 2.4 . »

To measure the RF performance of the mixer, the chip
was mounted in a three-port fixture, with special (40-GHz) -



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-34, NO. 4, APRIL 1986

Fig. 4. Mixer in waveguide test fixture.
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Fig. 6. Conversion loss of a monolithic mixer.

SSMA connectors and low-loss coax/waveguide transi-
tions. Fig. 6 shows the conversion loss of the mixer, as
measured at the optimum LO drive level of 13 dBm. With
the LO fixed at 36 GHz, the minimum conversion loss is
6.3 dB and the 3-dB bandwidth is 7 GHz. Correcting for
the connector and transition loss, the minimum conversion
loss of the mixer is estimated to be 5.3 dB. This perfor-
mance compares favorably with the best reported results
for Ka-band monolithic mixers [5], [6].

IV. IF AMPLIFIER

Another key component in the front end is the two-stage
IF amplifier. Each stage is realized as a hybrid IC on a
5-mil semi-insulating GaAs substrate. This approach al-
lows for compatibility in the processing of the mixer and
IF chips. Moreover, the IF chip can be upgraded to a fully
monolithic circuit, when desired, with further work. (A
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long-range goal of this program is to produce an entire
receiver on a single chip.)

Each stage is a lumped-element lossy feedback amplifier,
with a commercially available GaAs device (Mitsubishi
MGFC 1402). The circuit layout and schematic diagram of
one stage are shown in Figs. 7 and 8. Parallel feedback is
used for gain flatness and reduced input-output VSWR.

IF INPUT IF OUTPUT
L—————— 160 MILS (TYP ) —————4
Fig. 7. Circuit layout for a one-stage IF amplifier
TRL
550 2 42pF
95 2, 10°

MGFC-1402 95 (1, 14° 950,12°  49pF
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Fig. 8. Schematic diagram of a one-stage IF amplifier.
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Reactive input and output networks are included for fur-
ther VSWR reduction, and to provide convenient bias-
injection points. The feedback resistor R, is achieved with
a tantalum-film meander line, whose width is 25 pm. All
capacitors are overlay types, with a tantalum-oxide dielec-
tric and an airbridge connection to the adjacent element.
The bypass capacitors (C, and C,) include via-holes which
connect the bottom plate to the microstrip ground plane.

The processing steps for fabricating the lumped elements
are shown in Fig. 9. The process begins with the in situ
deposition of seven layers of Ta, Au, and Ta,0; (Fig.
9(a)). Next, the layers are selectively etched to form the
lumped elements of Fig. 9(b). The resistors are defined by
a combination of wet- and dry-etch techniques. All the
other elements are defined entirely with plasma dry-etch
techniques.

After this, via holes are added to form a low-inductance
ground to the rear-surface metallization (Fig. 9(c)). Finally,
airbridges are added, as shown in Fig. 9(d).

The elements that were processed and evaluated include:

interdigital capacitors (0.1-1.2 pF),
overlay capacitors (0.5-160 pF),
meander inductors (0.5-2.5 nH),
spiral inductors (3.4-9.3 nH), and
meander resistors (300-1000 ).

Some examples of typical lumped elements are shown in
Fig. 10. After the processing, RF testing was performed to
determine the equivalent circuit and useful frequency range
for each element. Examples of typical equivalent circuits,
unloaded Q’s, and self-resonant frequencies (SRF’s) are
presented in Fig. 11.

Following the characterization of isolated elements, a
one-stage amplifier was designed and tested. Fig. 12 sum-
marizes the key performance features of the amplifier.
Across the design band of 1-2 GHz, the measured gain
was 10.5 4+0.4 dB and the noise figure was 2.5 +0.2 dB.
Additional measurements showed that the input/output
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Fig. 9. Processing steps for fabricating lumped elements.
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Fig. 10. Lumped elements on semi-insulating GaAs.
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SWR was less than 1.9:1 and the output power for 1-dB
gain compression was +10.8 dBm. This performance is in
good agreement with the computer-aided design analysis.

V. LocAL OSCILLATOR

Module A contains a 7-dB pad, which ensures a good
LO input SWR during unpumped (start-up) conditions. A
coax connector can be attached to the input of the pad, for
external LO operation. Alternatively, a lumped-element
Gunn oscillator (in Module B) can be substituted for the
LO connector.

As in an earlier design [7], the lumped-element oscillator
features small-size (0.1 cubic in) and minimum parts count.
The construction features and the equivalent circuit of the
oscillator are shown in Fig. 13(a) and (b), respectively. The
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Fig. 13. Lumped-element oscillator. (a) Photograph of an oscillator
circuit. (b) Circuit diagram.
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Fig. 14. Oscillator with a waveguide test fixture.

output of the oscillator is a subminiature coax cable (UT-
34), which can interface with a waveguide test fixture (Fig.
14) or Module A. The oscillator requires 4.9 Vdc at 1.1 A,
and provides a power output of +18.7 dBm at 35 GHz.

VI. INTEGRATED FRONT END

The previously described components have been in-
tegrated to form a microminiature Ka-band front end. Fig.
15 shows Module A, which includes the monolithic mixer,
LO pad, mode barrier, and two-stage IF amplifier. In
addition to the RF, LO, and IF connectors, the housing
contains bias pins for dc inputs to the amplifier.

Fig. 16 shows the measured RF-IF gain of Module A,
with external LO drive. For each of the indicated LO
frequencies, the drive level was held at +12.5 dBm, refer-
enced at the mixer input (i.e., +19.5 dBm at the input to
the 7-dB pad). As expected, upper and lower sideband
responses appear symmetrically about the LO frequency.
An RF-LO gain of 11 dB or better can be achieved across
a wide (7.5-GHz) band by step tuning the LO from 33.5 to
36.5 GHz.

Fig. 15. Module A of integrated Ka-band front end.
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Fig. 17. Entire front end (Modules A and B).
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The noise figure of Module A was also measured. With
the LO fixed at 35 GHz, the double sideband (DSB) noise
figure was 7 dB for power levels of 11-13 dBm at the
mixer input. From this measurement and the known con-
version loss of the mixer and the gain of the IF ampilifier, it
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can be shown that the excess noise ratio of the mixer
diodes is unity. o

After completing the tests of Module A with an external
LO, the module was integrated with Module B (Fig. 17).
As shown in Fig. 18, good agreement was obtained be-
tween the noise-figure measurements with internal and
external LO’s. Additional measurements, including RF—IF
gain, confirm that the mixer integration has been success-
fully completed.

VIIL

A Ka-band front end has been developed which in-
tegrates a low-loss wide-band monolithic mixer, a two-stage
hybrid IF amplifier, and a lumped-element Gunn LO.
Small size (0.5 cubic in) and high performance (11-dB gain
over a 7.5-GHz RF band) have been obtained by applying
synergistic IC construction techniques. This type of front
end is applicable to a wide range of system applications,
including EW frequency-extension programs, radiometric
seekers, and phased-array radars.

CONCLUSIONS
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